Structure and Mechanical
Properties of Materials



Introduction to Material Properties

* New Focus on:

— Fundamental information on the bulk
properties of biomaterials

— Basic level to enable understanding of
metallic, polymeric, and ceramic substrates

* In the next few classes we will cover:
— Crystal structure
— Stress-strain behavior
— Creep, fracture, fatigue, and wear of materials
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Solidification of a Polycrystalline Material

{c) {d}

a) Nucleation of cryvstals, b) crvstal growth, ¢) irregular grains form as crystals grow
together, d) grain boundaries as seen in a microscope.



Grain Boundaries

Figure 4.12 (a) Section of a grain boundary and its surface groove
produced by etching; the light reflection characteristics in the vicin-
ity of the groove sre also shown. {b) Photomicrograph of the sur-
face of a polished and etched polycrystalling specimen of an iron-
chromium alloy in which the grain boundaries appear dark. 100,
[Photomicrograph courtesy of L., C. Smith and C. Brady, the Na-
tiopal Bureau of Standards, Washington, DC.)




The Three Common Types of Materials

e The three common types of materials are - metals, ceramics and
polymers

e These have different types of interatomic bonding
¢ Metals are atoms with free outer electrons (metallic bonding)

e Ceramics are generally solid inorganic compound (ionically and/or
covalently bonded)

¢ Polymers are chain structures that are based on covalent carbon-
carbon bonds and dipolar attractions

- linear polymers (thermoplastics)
- three-dimensional polymers (thermosets)



Introduction to Carbon Polymers
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Introduction to Carbon Polymers
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Branching in Polymers

An extension of the concept of adding large side groups is for the group to
itself be a large polymeric molecule. This is termed branching.
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Cross-Linking In Polymers

The complete transition from linear polymer to network polymer
can be caused by extensive branching, called cross-linking.

The most common examples are rubber molecules cross-linked
by sulfur: vuleanization.

Isoprene meris
bifunctional and
contains a
double bond.
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Multy-Component Polymers
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Multi-Component Polymers

Lamellar
chain-folded
crystallite

Tie molecule

Amorphous
material

Spherulite surface




Mechanical Properties of Materials

e The application of biomaterials requires a good understanding of their
mechanical properties

e Mechanical properties may be described as the response of materials
to mechanical loads

e The mechanical properties of materials are strongly influenced by their
structure/microstructure

e Basic mechanical properties will be described along with experimental
methods for their measurement

- elastic-plastic behavior
-  creep and viscous flow
- fracture and fatigue

- wear of materials



Fundamentals of Elastic Behavior

» In 1678 Robert Hooke showed that a solid material subjected to a tensile
(distraction) force would extend in the direction of traction by an amount that
was proportional to load

» The above is known as Hooke's law which expresses the fact that most solids
behave like springs under relatively small loads

e Elastic behavior is associated with chemical bonding & force-separation curves

ematic Nllustration of H :
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Basic Types of Loading and Deformations

e The deformation depends not only on load but also on geometry and
material structure/composition

e The effects of geometry can be considered by normalizing loads with
respect to area or deformation with respect to length

e This may be done for tensile or shear deformation

e Constitutive behavior provides relationship between stress and strain
(o = f(e) or t = f(y))
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Definition of Stress

Tensile Stress Shear Stress




Definition of Stress
: Ft
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Definition of Strain

Tensile Strain
Lateral Strain
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Definition of Strain

Tensile Strain, ¢

J Lateral Strain, ¢
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Poisson’s Ratio

The stress-strain curve does not show an important
feature of plastic deformation:
-A contraction perpendicular to the extension
caused by a tensile stress

The effect is characterized
by Poisson's Ratio:

elongation
€
v=-X

€z

v =0.29 for ductile iron
v = 0.35 for magnesium

contraction



Definitions of Elastic Constants

e From Hooke's law - we have the following relationships between stress
and strain

oo = Ee (tension or compression)
T = Gy (shear)

where E is the Young's modulus and G is the shear modulus

e For isotropic solids E = 2G(1+v)
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Basic Definition of Tensile Properties

* The basic definitions of strength, elongation and modulus are provided
in the schematic below

e Yield strength often defined with a 0.2% strain offset
» Ultimate tensile strength corresponds to peak load/stress

» May define percent elongation to failure or plastic strain to failure

hematic Hlustration of Tensile Properti

Stress

p ! P 1
0.2% H F G Strain .



Tensile Properties and Their
Measurement

» Most tensile tests are conducted on servo-hydraulic or electro-
mechanical testing machines

 Load is monitored in series with a load cell attached to the specimen

» Displacement is monitored with a displacement gage within a narrower
section of the specimen
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Strength over Density
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Non-Linear Deformation of
Lumbar Vertebra
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Non-Linear Deformation of
Lumbar Vertebra

Ultimate load under Tension/Compression

Lot (M)




Stresses on Bone Under
Different Types of Loading
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Stresses on Bone Under
Different Types of Loading

Principal Stresses and Ski Injury in Tibia due to Torque




Mechanical Properties of Tissue

* The deformation behavior of tissue can be divided into
biomechanically and clinically relevant regions

* For example, the deformation behavior of a ligament
may be divided into physiologic and traumatic ranges

* Little effort is needed to deform ligamant into neutral

zone (NZ)), more needed to deform into the elastic zone
(EZ), and micro-trauma occurs in plastic zone (PZ)
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Plasticity of Tissue

 Plasticity occurs in the range where loads or
deformations result in permanent shape changes

* Example of Dizzie Gillespie - legendary trumpet player

e Difference between cheeks as a young or old man



Sub-Fallure Injury

* This is associated with stretching of soft tissue

» Stretching results in incomplete failure of tissue

- Failure is 100% of stretch

- Consider failure of rabbit anterior crucial ligament
- 80% stretch causes permanent deformation/injury
Failure load upon unloading is unchanged

- May cause joint instability or clinical problems

Load (%} ) Load (%)

00 L _
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Material Properties of
Biological/Implant Materials




Basic Definition of Toughness

» The area under the stress-strain curve corresponds to the energy

(work) required per unit volume for the deformation of a material until
failure

» This work corresponds to the toughness of the material

e Toughness must be distinguished from fracture toughness which is a
measure of the resistance to crack growth

Engineeringt ,smaller toughness (ceramics)

larger toughness Ors [
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Summary and Concluding Remarks

This class presents an introduction to the structure
and properties of materials

A simple introduction to amorphous and crystalline
structure was presented

This was followed by some basic definitions of
stress, strain & mechanical properties

The mechanical properties of soft and hard tissue
were then introduced

Balance of mechanical properties is key for design



