The Role of Universities in Research for Developing Natural Products as Medicines

Charles de Koning

University of the Witwatersrand
South Africa
Over past 25 years nearly half of the 1184 new chemical entities that have been marketed come from substances found in Nature.
Drugs from Nature—Penicillin

Penicillin G isolated from the mold *Penicillium notatum*

Drugs from Nature—Semi-Synthesis Penicillin

Oxacillin
Anticancer Agent: Drugs from Nature—Taxol
Anticancer Agent: Synthesis from pine needles of European Tree

10-Deacetylbaccatin

Taxol
Examples of Synthetic Drugs

Valium (Diazepam)

Viagra (Sildenafil Citrate)

Lipitor (Atorvastatin)
Reverse Transcriptase Inhibitors

- AZT
- Emtricitabine (Emtriva)
- Nevirapine

Protease Inhibitors:

- Saquinavir
Two Projects in our Laboratories

• Natural Product based Project

Tanzania: four plants used to prolong the life of people infected with HIV

What are the active ingredients?

Prenacanthe kaurabassana tuber
Extraction of natural (organic) products by following the bioactivity.

• How do you do this?

• What bioassay do you use?

• Use organic solvent (EtOAc). Extract showed moderate anti-HIV activity as HIV entry inhibitor assay by displaying full inhibition at 25 µg/mL.

• Could be wrong bioassay—might not be entry inhibitor!
Take crude organic solvent (EtOAc) that showed moderate anti-HIV activity and try to purify mixture.

\[\text{Chemical Structures} \]

- \(\text{CO}_2\text{H} \)
- \(\text{OH} \)
- \(\text{OMe} \)

\(R = \text{H} \)

\(R = \text{Me} \)
Table 4. HIV Screening Results of Xanthones 1 and 2 in the deCIPhR® Assay

IC$_{50}$ = 50% inhibitory concentration in anti-HIV assay; TC$_{50}$ = 50% inhibitory concentration in cytotoxicity assay

<table>
<thead>
<tr>
<th>Sample</th>
<th>IC$_{50}$</th>
<th>TC$_{50}$</th>
<th>SI</th>
<th>IC$_{90}$</th>
<th>TC$_{90}$</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xanthone 1</td>
<td>21</td>
<td>>12.5</td>
<td>-</td>
<td>111</td>
<td>>12.5</td>
<td>-</td>
</tr>
<tr>
<td>Xanthone 2</td>
<td>2</td>
<td>31</td>
<td>15.5</td>
<td>22</td>
<td>154</td>
<td>7</td>
</tr>
<tr>
<td>Enfuvirtide</td>
<td>0.01</td>
<td>Not done</td>
<td>-</td>
<td>0.026</td>
<td>Not done</td>
<td>-</td>
</tr>
</tbody>
</table>

(positive control)
NMR Spectroscopy Facility

R8 million
Needs liquid argon and nitrogen
Synthesis based Project
Synthesis based Project
Study their activity against diseases

Colon Cancer---Caco 2 and HT 29 cell lines

Work out their mechanism of action

Compounds were found to be very active against colon cancer and not toxic to white blood cells

<table>
<thead>
<tr>
<th>Compound</th>
<th>HT-29 (µM)</th>
<th>Caco-2 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12.89 ± 2.41</td>
<td>11.91 ± 1.10</td>
</tr>
<tr>
<td>4</td>
<td>6.57 ± 1.91</td>
<td>6.43 ± 1.01</td>
</tr>
<tr>
<td>6</td>
<td>9.14 ± 1.02</td>
<td>9.03 ± 0.99</td>
</tr>
<tr>
<td>7</td>
<td>9.20 ± 0.83</td>
<td>17.38 ± 1.13</td>
</tr>
<tr>
<td>12</td>
<td>21.98 ± 1.17</td>
<td>20.28 ± 3.45</td>
</tr>
<tr>
<td>13</td>
<td>10.03 ± 2.69</td>
<td>15.02 ± 1.98</td>
</tr>
<tr>
<td>14</td>
<td>8.56 ± 1.22</td>
<td>8.73 ± 1.28</td>
</tr>
<tr>
<td>Camptothecin</td>
<td>10.00 ± 1.41</td>
<td>9.55 ± 2.21</td>
</tr>
<tr>
<td>Compound</td>
<td>HT-29</td>
<td>Caco-2</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>3</td>
<td>12.89 ± 2.41</td>
<td>11.91 ± 1.10</td>
</tr>
<tr>
<td>4</td>
<td>6.57 ± 1.91</td>
<td>6.43 ± 1.01</td>
</tr>
<tr>
<td>6</td>
<td>9.14 ± 1.02</td>
<td>9.03 ± 0.99</td>
</tr>
<tr>
<td>7</td>
<td>9.20 ± 0.83</td>
<td>17.38 ± 1.13</td>
</tr>
<tr>
<td>12</td>
<td>21.98 ± 1.17</td>
<td>20.28 ± 3.45</td>
</tr>
<tr>
<td>13</td>
<td>10.03 ± 2.69</td>
<td>15.02 ± 1.98</td>
</tr>
<tr>
<td>14</td>
<td>8.56 ± 1.22</td>
<td>8.73 ± 1.28</td>
</tr>
<tr>
<td>Camptothecin</td>
<td>10.00 ± 1.41</td>
<td>9.55 ± 2.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>White Blood Cell Viability %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>76.176 ± 0.567 %</td>
</tr>
<tr>
<td>4</td>
<td>88.943 ± 1.996 %</td>
</tr>
<tr>
<td>6</td>
<td>83.762 ± 1.389 %</td>
</tr>
<tr>
<td>7</td>
<td>93.834 ± 0.271 %</td>
</tr>
<tr>
<td>12</td>
<td>96.311 ± 5.023 %</td>
</tr>
<tr>
<td>13</td>
<td>97.479 ± 1.178 %</td>
</tr>
<tr>
<td>14</td>
<td>77.345 ± 1.005 %</td>
</tr>
<tr>
<td>Camptothecin</td>
<td>33.782 ± 2.031 %</td>
</tr>
</tbody>
</table>
Imidazo[1,2-a]pyridines

Caspase 8 activation

↓ mitochondrial transmembrane potential

Cytochrome c release

Caspase 3 activation

APOPTOSIS

Targets for Drugs often Enzymes/Proteins:

Lock and Key Analogy
- key = substrate
- lock = enzyme
- correct fit, will react
- incorrect substrate
- no reaction

Induced Fit Theory
- Substrate - Enzyme Complex
- Active Site

C. Ophardt, c. 2003
The X8 Diffractometer

- 80-500 K Oxford Cryostream Plus system
- 2.7 kW Microstar Cu rotating-anode generator
- λ = 1.54178 Å
- 4K Platinum 135 CCD detector
- Four-axis Kappa goniometer
- Montel optics
Anti-HIV drugs

Crystal structure of nevirapine inhibiting reverse transcriptase

Nevirapine (Viramune)
Anti-HIV drugs
Crystal structure of saquinavir inhibiting HIV protease

Saquinavir
(Invirase)
• Natural Products are important compounds for discovery of medicines

• Natural product isolation combined with synthesis allows for assembly of new biologically chemical entities

• Universities can do basic research such as isolation, synthesis, identifying biological targets, preliminary biological testing
Drug R&D in Review

Define Target Find Lead Choose candidate File IND First Human Dose First Effective Dose Product Decision File NDA

Lead Identification Lead Optimization Pre-clinical development Phase 1 Phase 2 Phase 3 FDA

300-600 days 450 450 500 800 400

$10-70M $3-10M $4-50M $20-200M $100-500M

2900-3200 Days or 8-9 Years

Good Idea Drug Approved

$137-830M

Oh, and there is roughly a 4% chance of success

"Half of the modern drugs could well be thrown out of the window, except that the birds might eat them."

Martin Henry Fischer: