

DEVELOPING SIMULATION TOOLS FOR RESEARCH IN ALLOY DEFORMATION AND DEGRADATION

Eng. Dr. Kenneth D. Njoroge

PROCESSING AND APPLICATION NEEDS

A:

- Achievable melting points and lower energy consumption
- Controlled plastic flow during forming
- Techniques to enhance desired properties

B:

- Ability to forecast material properties development and processing
- Ability to forecast component performance application

- 4
- Current approach: use empirical tests to generate data to enable

one forecast behavior and performance;

Very effective

Requires specialized equipment – quite often high value

RATIONALE FOR ENGINEERING SIMMULATION - II

- 5
- New approach: use computers to simulate behavior;
 - Lower evaluation cost
 - A larger volume of data can be generated
 - Easily applied to the geometry of the part
 - Allows easy replacement of material

- 6
- Eliminates the need to <u>assume</u> some underlying mechanism that

drives the material's behavior

CHALLENGES TO SIMMULATION BASED RESEARCH

- Is limited to computational power and accuracy of scientific models used
- Requires development of simulation tools
- Needs validation using fundamental empirical data

CURRENT EFFORT

Material is normally built by basic building blocks of differing

sizes, shape, orientation and physical structure

Need to establish mechanism for the interaction of

building blocks - information required by the simulation tools

Intervention – develop algorithms to manage the variation of

the building blocks and the aggregation of their contribution.

OUR STRENGTHS

- Fundamentals and opportunities of multi-scale modeling using EAM are well understood
- Capacity to develop simulation code has been demonstrated
- 2 element BCC alloy code developed. Can be enhanced to include:
 - More elements
 - FCC & HCP structures
- Capacity to develop models for simulation of material evolution has been demonstrated

OPPORTUNITIES

- Substantial foundational knowledge exists in micro/nano-scale materials evolution mechanisms
- Scalable architecture for a cluster HPC platform enables progressive investment
- Use collaboration to meet specialized validation efforts
- Pool of candidates for training in materials modeling

RESEARCH VISION

- Allow for variation in the alloy content
- Develop transferable models suitable for multi-element alloys
- Develop materials and engineering multi-scale simulation tools
- Apply simulation tools to study industry needs: e.g. roll forming, protection against corrosion, wear reduction, etc
- Develop a pool of competent computational materials scientists
- Develop computational materials modeling as a viable research technique for industrial development

CURRENT PROJECTS

- Simulation of Crack Propagation in a Pressure Vessels using the Energy J-Integral Method: J. K. Mutava, M.Sc. JKUAT
- Liner Wear Reduction in a Single Toggle Jaw crusher, G.
 Quartey, M.Sc. JKUAT
- Stress Analysis of Buried Oil Pipelines in Earthquake Prone Areas, L. Kikande, M.Sc. JKUAT

PROPOSED PROJECTS - I

Corrosion modeling

- Modeling of element contribution to corrosion resistance in nodular cast irons for the oil and gas industry valves and fittings
- Modeling of corrosion mechanisms in sour gas oil pipelines
- Modeling of corrosion mechanisms in construction steels for marine vessels
- Modeling of corrosion mechanisms in rebar in water retention concrete structures
- Corrosion protection
 - Development of coatings for sour gas oil pipeline protection

PROPOSED PROJECTS - II

- DEM modeling of material flow & Wear modeling in the commutation processes, in selected mining equipment
- Variable roll forming
- Development of Ab-initio capacity

GROUP PHILOSOPHY

Existing knowledge: Bonding behavior, Lattice evolution, Grain & grain boundary evolution, Bulk material behavior.

